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The quantum trajectory approach is generalized to arbitrary coordinate systems, including curvilinear
coordinates. This allows one to perform an approximate quantum trajectory propagation, which scales favorably
with system size, in the same framework as standard quantum wave packet dynamics. The trajectory formulation
is implemented in Jacobi coordinates for a nonrotating triatomic molecule. Wave packet reaction probabilities
are computed for the O(3P) + H2 f OH + H reaction using the approximate quantum potential. The latter
is defined by the nonclassical component of the momentum operator expanded in terms of linear and exponential
functions. Unlike earlier implementations with linear functions, the introduction of the exponential function
provides an accurate description of asymptotic dynamics for this system and gives good agreement of
approximate reaction probabilities with accurate quantum calculations.

1. Introduction

The standard methods of quantum molecular dynamics based
on a grid or basis representation of the wave function are not
feasible for systems beyond 10-12 degrees of freedom due to
exponential scaling of the numerical effort with system size.
At the same time, classical molecular dynamics is widely used
to study systems of hundreds of atoms, but it is incapable of
capturing quantum-mechanical (QM) effects, such as nonadia-
batic dynamics and the quantum behavior of hydrogen atoms.
Therefore, the development of rigorous semiclassical methods
that combine favorable scaling of classical mechanics with
respect to system size with an accurate QM description of
molecular motion is a long-standing goal of theoretical chem-
istry.

In semiclassical methods, the nonlocality of quantum me-
chanics can be introduced through local high-order expansions,
such as the second-order expansion of the potential in the Initial
Value Representation methods.1,2 Alternatively, the influence
of nonlocality on the dynamics can be included via ensemble
or density averaged effective potentials as in the Ehrenfest-type
methods.3 Phase space formulations with initial conditions
satisfying the uncertainty principle can also describe some
quantum effects. For example, the Wigner method4,5 gives the
correct QM evolution of the harmonic oscillator, even though
propagation of trajectories is purely classical. From practical
considerations, it is desirable to have a semiclassical method
that has a well-defined classical limit, is improvable toward the
exact QM limit, has favorable scaling with system size, and
does not require evaluation of Hessians. This means that a
trajectory description and a coordinate space representation of
a wave function are essential for such a method.

The hydrodynamic or de Broglie-Bohm formulation6 of the
time-dependent Schro¨dinger Equation (SE), which provides this
framework, has gained a considerable attention in recent years
as an alternative approach to quantum dynamics. The formula-

tion, which is formally equivalent to the standard SE, is based
on the polar form of the wave function

and leads to the representation ofψ in terms of quantum
trajectories propagated according to the laws of classical
mechanics. All QM effects are incorporated through the quantum
potential:

which is added to the classical potential in the equations of
motion (m is a mass of a particle). Exact implementation of
this formalism is generally impractical due to the complicated
and, possibly, singular quantum potential, but the quantum
trajectory framework is conceptually appealing: the trajectories
can be interpreted as the optimal set of grid points tracking the
dynamics of the wave function density. Following multidimen-
sional implementation of the de Broglie-Bohm formulation
using stationary grids by Dey et al.7 and the introduction of the
quantum trajectory method by Lopreore and Wyatt,8 a variety
of exact and approximate approaches have been suggested in
coordinate space9-14 and in phase space.15-21

For nodeless wave function densities, the quantum potential
vanishes in the classical limit of large mass. Therefore, the
quantum trajectory framework provides a natural connection
to classical mechanics and a convenient starting point for
semiclassical approximate approaches. Recently, Garashchuk
and Rassolov pursued the idea of using a globally determined
approximate quantum potential (AQP).22-25 The semiclassical
framework allows one to include the leading quantum effects
on dynamics by averaging over the wave function density,
including possible singularities in the exact quantum potential,
and ensures stable dynamics. The method has a well-defined
classical limit of zero AQP and the QM limit of a highly
accurate AQP. In its simplest (quadratic) form, the AQP is exact
for Gaussian wave packets in locally quadratic potentials, which
is a typical representation of moving nuclei. In more general
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systems it describes tunneling, zero-point energy, and isotope
effects as was shown for two-dimensional models of ICN and
H3. The accuracy of the approximate description can be
improved by using better than quadratic globally defined AQPs
or by defining quadratic AQPs on subspaces.26 In the latter case,
the nonclassical momentum can be linearized on several
subspaces or domains using weighting functionshi(x)A2(x, t)
in which moments of the trajectory distribution determine the
AQP parameters. The non-negative domain functionshi(x)
describing, for example, the reaction channels and interaction
region of a potential electronic surface or the anharmonic regions
of a potential, are chosen to add up to one,∑ihi(x) ) 1. Inter-
ference and nonadiabatic dynamics which are intrinsically
quantum effects can be efficiently described using a mixed polar/
coordinate space wave function representation:27-29 the overall
wave function is represented in terms of density and phase
associated with the quantum trajectory dynamics, while nona-
diabatic wave function transfer and the wave function nodes
are described through a coordinate space prefactor.

In the formalism of ref 25, the quadratic AQP is defined using
a linear approximationr̃ to the nonclassical momentumr:

Parameters ofr̃ are found variationally from the moments of
the trajectory distribution by means of linear algebra for any
number of dimensions or subspaces. The total energy in closed
systems is conserved. The quantum force for all trajectories is
obtained analytically from the AQP once every time step. The
number of moments scales quadratically with the system size
if correlation between all degrees of freedom is considered,
but the overall numerical cost of propagation is dominated
by the propagation of trajectories, which has a weaker depen-
dence than quadratic. The initial wave function density can be
sampled according to the standard methods of multidimen-
sional integration including Monte Carlo techniques. These
features make the AQP method well-suited for high-dimen-
sional problems that can be formulated in terms of local-
ized initial wave functions and defined in Cartesian or Car-
tesian-like coordinates. However, it is often useful to have
simple asymptotic motion such as uncoupled rovibrational
motion of reaction fragments achieved in non-Cartesian coor-
dinates. A proper treatment of symmetry can also be very
important. Our preliminary studies of atom+ diatom collisions
in Cartesian coordinates (with the center-of-mass motion
subtracted) using Gaussian initial wave packets for collinear
configurations have shown large differences between classical
and AQP results even at large incident energies. We attribute
this effect to the fact that while in the classical treatment,U )
0, the trajectories remain coplanar, in the AQP treatment, the
quantum trajectories spread in full six-dimensional space. Use
of coordinate systems with non-orthogonal kinetic energy,30 for
instance, the bond coordinate system in spectroscopy, has also
served as a motivation to generalize the quantum trajectory
formulation to arbitrary coordinate systems, as presented in
Section 2.

We test the AQP approach in curvilinear coordinates by
computing the wave packet reaction probabilities for O(3P) +
H2 (ν ) 0, j ) 0) f OH + H reaction in three dimensions for
zero total angular momentum on the3A′ and 3A′′ surfaces of
Rogers et al.31 The quantum trajectory formulation and the
definition of a simple AQP in angular coordinates are given in
Section 3. An improved AQP description for vibrational degrees
of freedom is described in Section 4. Results for the O+ H2

and O+ HD dynamics are presented in Section 5. Section 6
concludes the paper.

2. Quantum Trajectories in Arbitrary Coordinates

For a general curvilinear system of coordinates{xb}, the
kinetic energy operatorT̂ is

Here3 is the gradient operator of a general form:

and3† acts on the left.G is an inverse matrix of masses and
moments of inertia. In general,G can have off-diagonal
elements. In chemical applications, a system of coordinates is
often chosen to eliminate derivative cross-terms in the Hamil-
tonian, so that asymptotic motion of fragments is uncoupled.
This means that the matrixG is diagonal. Typical coordinates
for these applications are the Jacobi or Radau coordinates in
spectroscopy or reactive scattering calculations.32 The derivation
below is given for the diagonal form ofG, but it can be extended
to the nondiagonal case in a straightforward manner. We use
atomic units,p ) 1, throughout, and thep dependence is noted
where it is important for interpretation. For square-integrable
wave functions, taking into account the JacobianJ ) J(xb) of
the transformation from Cartesian coordinates to a given set of
coordinates, eq 1 can be rewritten as

The components of the vectordB are

The hydrodynamic or Bohmian form of the SE is based on the
representation of a wave function in terms of real phase and
amplitude or density:

Substitution of eq 5 into the SE and separation into real and
imaginary parts gives the following equations:

and

U is the quantum potential which is, formally, the onlyp2 term
becoming small in the classical limitp f 0. All other terms do
not depend explicitly uponp. We can define a full time
derivative as

r ) 3A(x, t)/A(x, t)

T̂ ) 1
2
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in the frame of reference moving with the velocity

Then, eq 8 becomes

Differentiating eq 6 with respect toxi and using eq 9 one
obtains

If derivatives of the phase are identified with the momentum

and the phaseS is identified with the classical action function,
then for any form of the gradient operator eqs 6, 10, and 12
give time dependence ofxb, pb, andS:

Equations 14-16 are consistent with classical equations of
motion of a trajectory governed by the Hamiltonian:

For a nondiagonal form of the matrixG, the equations of motion
correspond to the Hamiltonian of eq 17 with the single
summation replaced by the double sum,∑klGkl fk flpkpl.

Importantly, the density of a wave function “carried” by a
trajectory within the associated volume elementJΩ, Ω ) Πiδxi,
or the trajectory weight

is conserved in closed systems as has been the case in Cartesian
coordinates:23

This can be verified by using eqs 9-11 to define time
derivatives in eq 19:

The weight conservation property means that one does not

need to solve eq 11 involving gradients ofpb and F to deter-
mine the time dependence of the density. Moreover, the
expectation value of an operator that is local in the coordinate
representation, such as the wave packet probability, can be found
by simple summation over the trajectory weights,〈Ô〉 )
∑nO(xbn)wn.

Equations 14-16 and 19 give a local description of quantum
dynamics with the exception of the nonlocal quantum potential
U given by eq 7. This is the quantity that vanishes in the classical
limit of small p and large mass for nodeless wave function
densities. We determineU approximately in order to make the
quantum trajectory framework practical in large systems, while
retaining the dominant quantum effects. It is convenient to define
U in terms of the nonclassical component of the gradient
operator:

Then, the quantum potential in an arbitrary system of coordinates
becomes

The nonclassical momentumrb is the only quantity that will be
approximated in the course of dynamics.

3. Trajectory Formulation for Three-Dimensional Jacobi
Coordinates

A. Equations of Motion. Let us apply the formalism of
Section 2 to a nonrotating triatomic molecule described in
the Jacobi coordinates{x, y, θ} wherey is the diatomic inter-
nuclear separation,x is the distance between the third atom
and the center of mass of the diatomic, andθ is the angle
betweenx andy. The motion of the center of mass is subtracted,
and the total angular momentum is set to zero. The SE is
typically solved for the wave function scaled byxy so that the
volume element is

The QM Hamiltonian is

with the moments of inertia included as

For the givenĤ, the derivative operators (2) and (4) are

The matrixG has three nonzero components on the diagonal
{M-1, m-1, µ-1}. Substitution of the polar form of the wave
function

into the SE and identification3S ) pb, lead to the following
expressions for the time evolution of the phase and density:
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Ĥ ) - 1
2M

∂
2

∂x2
- 1

2m
∂

2

∂y2
- 1

2µ( ∂
2

∂θ2
+ cotθ ∂

∂θ) + V (25)

1
µ

) 1

Mx2
+ 1

my2
(26)

3T ) ( ∂

∂x
,

∂

∂y
,

∂

∂θ), dBT ) (0, 0, cotθ) (27)

ψ(x, y, θ, t) ) A(x, y, θ, t) exp(ιS(x, y, θ, t)) (28)

5532 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Rassolov et al.



The full time-derivative is defined as in eq 9:

U is the quantum potential defined by eq 23 in terms of the
nonclassical momentumrb ) A-13A. The trajectory weightsw
defined by eqs 18 and 24 are constant in time for closed systems
as shown in Section 2 and can be used instead of solving eq
30.

B. Angle-Dependent AQP. The linearized nonclassical
momentum gives a useful and cheap global approximation to
the quantum potential for the dynamics in Cartesian coordi-
nates.25 In this approach the nonclassical momentumrb is
represented by a linear function of the coordinates, whose
parameters are found from the linear matrix equation in terms
of the first and second moments of the trajectory distribution.
The procedure is variational and, thus, conserves total energy
for a closed system. The corresponding AQP is exact for the
correlated Gaussian wave packets that are often used to represent
the ground vibrational state and localized wave function in the
translational degree of freedom. In principle, a linear combina-
tion of Gaussian wave packets can also represent other localized
wave functions.33 It was also shown that the accuracy of this
approach can be improved by defining a linearized nonclassical
momentum on subspaces26 and that the use of mixed coordinate/
polar representation of the wave function enables one to describe
nonadiabatic dynamics27,28as well as to describe density nodes29

in an efficient manner.
For a description in Jacobi coordinates, we extend the idea

of the linearized nonclassical momentum to include the angle.
In Cartesian coordinates, the use of the linear approximation to
the nonclassical momentum was motivated by the fact that this
treatment is exact in the important limiting case of an eigenstate
of the harmonic oscillator. Description ofrθ as a linear function
of θ can still be appropriate in some cases, such as applications
in spectroscopy, if the initial state is chosen as a localized
Gaussian function of the bending angle.34

In reactive scattering, the initial condition associated with
rotation of the diatomic molecule is typically a rotational
eigenstate. The lowest state,j ) 0, has zero nonclassical
momentum so usingr̃θ ) 0 in AQP already describes a
physically relevant approximation. To introduce the dependence
on the angle while keeping computation of AQP numerically
efficient and avoiding singular terms, we choose the parameters
of the linearizedrx and ry to be linear functions of cosθ. This
functional form of approximater̃ corresponds to a functional
form of a wave function amplitude:

where RBT ) (x - x0, y - y0) and B and B′ are symmetric
matrixes.C is a normalization factor;x0, y0, and the matrix
elements are parameters. (The amplitudeÃ is never used in
dynamics.) Then, usingr̃ ) Ã-13Ã, the basis for expansion of
rx and ry is

while the basis forrθ is

Approximations to the radial components arer̃x ) cbx
TηbR and

r̃y ) cby
TηbR. Optimization of the coefficientscbx and cby is

completely analogous to the procedure in Cartesian coordi-
nates.26 The approximation to the angular component isr̃θ )
sinθcbT

θηbθ. Optimal parameterscbθ are found from minimization
of the error functional,fΩ(rθ - r̃θ)2a2δΩ, whose parameter-
dependent part after integration by parts becomes

Ω is the volume of integration and the volume element isδΩ
) sinθ dθ dx dy. For the basis given by eq 34, all integrals in
eq 35 are nonsingular and can be expressed as sums over the
trajectory weights:

Minimization of eq 36 with respect tocbθ gives the optimal
parameter values

Note that eq 35 is proportional to the contribution ofrθ to the
quantum potential; therefore, its minimization results in con-
servation of total energy.24

4. Accurate Description of Asymptotic Motion

The time evolution of wave functions for bound potentials
presents a major challenge for quantum trajectory methods,35,14

with the exception of Gaussian wave packets evolving in
harmonic potentials. Since zero-point energy is often a leading
quantum effect in large molecular systems, efficient description
of wave packet dynamics in anharmonic potentials is highly
desirable. In anharmonic systems, the accuracy of the quantum
potential quickly (depending on anharmonicity) deteriorates with
time and trajectories decohere even for the ground-state initial
wave function. In theory, the positions of the quantum trajec-
tories representing an eigenstate remain unchanged, because the
quantum potential compensates the classical potentialV up to
an additive constant. Numerically, such perfect compensation
is difficult to achieve, which leads to the rapid error accumula-
tion as trajectories begin to move. One way addressing this
problemsa truncated Taylor expansion of the potential allowing
for exact cancellation of the classical and quantum forcesswas
suggested in ref 14. In the context of AQP, linearization of the
nonclassical momentum on subspaces increases the accuracy
of the quantum potential and extends the duration of accurate
dynamics, though a large number of subspaces are required for
perfect cancellation of the classical and quantum forces.26

In reactive scattering, we can also improve description of the
asymptotic vibrational states by explicitly including a suitable
basis function in the expansion of the nonclassical momentum.
Diatomic molecules are often represented as particles of reduced
massm governed by a Morse potential36:

The nonclassical momentum for the lowest eigenstate of the
Morse oscillator is
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+ r̃θcotθ + r̃ θ
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n

(2cbθ
Tηbθ cosθn + cbθ

Tηbθηbθ
Tcbθ sin2θn)wn (36)
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and the same as eq 39 different only in the constant for higher
eigenstates. Note that for an integrable wave function the slope
of r in eq 39 is positive. It is especially important thatr is a
linear function with respect toú. Therefore, including the
functionú into the expansion basis ofr, r̃ ) cbTηb, ηb ) {1, x, ú},
gives the exact quantum potential for the eigenstates of the
Morse oscillator and should increase accuracy for other anhar-
monic potentials that are reasonably approximated by a Morse
potential in the region of nonzero wave function density.
Optimization of the expansion coefficientscb is the same as
described in ref 25 for the linear basis set.

As a numerical example, we compute the autocorrelation
function of the ground state of the nonrotating H2 molecule.
The corresponding potential exhibits a large degree of anhar-
monicity even at low energies. The potential is defined by eq
38 with parameter values taken from LSTH surface:37,38 m )
925.26me, D ) 0.1663 hartree,z ) 1.1a0

-1, andxm ) 1.41a0.
Figure 1a shows the real part of the autocorrelation function
computed from trajectories using

for six oscillations. The initial wave function is

wherek ) 0.009087 is the normalization factor. Figure 1b shows
the corresponding quantum trajectories that are completely
stable. Figure 1, panels c and d, shows propagation of the
Gaussian wave packet, which is the ground state of the harmonic
approximation to this Morse potential:

with the parameterR ) 9.66 a0
-2. The agreement of the

autocorrelation function, which is similar to that of the Morse
eigenstate, is very good. This is a dramatic improvement over
the AQP computation with the basis of linear functions, where
trajectories and, consequently,C(t) decohere after half of the
oscillation period due to the strong anharmonicity. Figure 1d
shows the error accumulation as a function of time in the
absolute value ofC(t) for the bases with and withoutú.

Use of the exponential function for the description of
vibrational dynamics will make the propagation more accurate
in many cases, because the lowest eigenstate serves as a basis
for coherent states of the Morse potential39 and because the
nonclassical momentum of the excited states is a linear function
of ú. The basis functionú ) exp(-z(x - xm)) has just one
parameter since the shift byxm is equivalent to multiplication
of ú by a constant optimized in the expansion procedure. The
parameterz can be chosen from the approximation, possibly a
time-dependent one, to the classical potential in the regions of
nonzero density. Optimization ofz along with the expansion
coefficientscb is also a possibility. This, however, is a nonlinear
optimization and may add significant cost to an otherwise
efficient method.

5. Dynamics of O(3P) + H2 in Three Dimensions

As a test of the non-Cartesian quantum trajectory approach,
we compute wave packet reaction probabilities for the O(3P) +
H2(ν ) 0, j ) 0) f OH + H system on the3A′ and3A′′ potential

energy surfaces of Rogers et al.31 This system has been
extensively studied in recent years, in both theoretical and
experimental work.40-44 In this study, we are interested in the
low-energy regime where tunneling plays an important role. The
wave packet reaction probabilities are computed as the sum over
trajectories in the product region:

whereR0 ) 3.5a0 andRi is the bond length of OH as a function
of time. The propagation is terminated onceP stops changing
in time. The initial wave packet is a direct product of the
Gaussian in the translational coordinate and the ground state in
the internal degrees of freedom:

The translational parameters areR ) 4 a0
-2, x0 ) 6 a0, p0 )

[6, 20]. ø(y) is the ground vibrational state represented as a
Gaussian:

with numerical parametersy0 ) 1.44 a0 and â ) 9.06 a0
-2.

The calculations were performed using 5000 trajectories with
pseudo-random sampling in three dimensions.45 We find that
the θ-component ofrb is small as compared to the radial
components and can be neglected. The classical probabilities
are obtained by setting the quantum potential to zero. A
comparison is made with time-dependent quantum calculations
that we have performed using the split-operator method46,47with
a grid representation forx and y and the Discrete Variable
Representation48 for θ. The grid is 256× 256 points with a
spacing of 0.08a0. The number of the DVR points is between
45 and 80 depending on the energy of the wave packet. The
AQP calculations are about 9 times faster than the quantum
propagation with 45 DVR points.

Exact QM and trajectory probabilities for the two surfaces
are presented in Figure 2 for one of the equivalent reaction
channels. The discrepancy between the quantum and classical
results is the most pronounced at lower energies. The errors in
classical probabilities for energies below 0.8 eV are about twice
as large for the3A′′ surface than for3A′. A quadratic AQP
obtained from linearization of the nonclassical momentumrb
described in Section 3.B corrects probabilities at energies below
0.3 eV but underestimates probabilities at higher energies. The
agreement between the trajectory and quantum results is
significantly improved when the exponential function,ú ) exp-
(-zy), is introduced into the radial basis as described in Section
4. The parameterzwas set to a value of the vibrational potential
in the reactant channel,z ) 1.1 a0

-1. Evidently, the additional
basis function improves the description of the asymptotic
dynamics and also contributes to the description at the transition
state. The expansion coefficient ofú was constrained to be
nonnegative, so that the resultingr̃ would be consistent with a
normalizable wave function, eq 39. The accuracy of the AQP
calculations on the two potential energy surfaces is comparable.

Figure 3 shows probabilities for the isotopically substituted
reaction O+ HD f OH(D) + D(H) as a function of the
translational energy. Here the width parameter of the initial
vibrational state of HD is taken to beâ ) 10.46 a0

-2. The
probability for producing the OD+ H fragments is relatively

r ) x2Dm(ú - 1) + z
2

(39)

C(2t) ) ∑
i

wi exp(2ιSi(t)) (40)

ψ(x, 0) ) (2λúk)λ-1/2 exp(-λú) λ ) x2Dm/z (41)

ψ(x, 0) ) (2R
π )1/4

exp(-R(x - xm)2) (42)

P ) ∑
i

wi(Ri < R0)

ψ(x, y, θ, 0) ) (Rπ)1/4
exp(-R(x - x0)

2 + ιp0(x - x0))ø(y)
(43)

ø(y) ) (âπ)1/4
exp(-â(y - y0)

2) (44)
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low (about 20% of that for OH+ D), so 15000-20000
trajectories per wave packet have been propagated to generate
the results. The quadratic AQP calculation gives a larger
correction to the probabilities of the OH channel as compared
to that of the OD channel, most likely because the discrepancy
between the quantum and classical results is larger for OH. Use
of the exponential function iny gives good agreement between
the quantum and trajectory results for both channels.

6. Conclusions

We have generalized the quantum trajectories approach to
propagation of the wave function in an arbitrary coordinate
system. This allows us to take advantage of the uncoupling of
partial waves in reactive scattering problems, to use nonor-
thogonal coordinate systems, such as bond coordinates in
theoretical spectroscopy, and to use initial conditions with well-
defined vibrational and rotational quantum numbers, as ap-

propriate for simulating many experiments. This approach has
been implemented using the approximate quantum potential
(AQP) method, which was extended to applications in distance-
angle variables. We have also improved the AQP description
of asymptotic motion of vibrational eigenstates by including
the exponential function into the approximation procedure. This
new feature allows for an exact treatment of the Morse oscillator
eigenstates. Its application to other types of bound potentials
and initial wave functions will be explored in future work.

The AQP method was implemented in three-dimensional
Jacobi coordinates to treat a nonrotating O+ H2 system. We
have computed the wave packet reaction probabilities for the
O(3P) + H2 f OH + H reaction for the ground state of the
reagents. Overall, the classical calculation (performed by setting
AQP to zero) gives probabilities that are well below the exact
quantum results at energies close to threshold, though they
approach QM results at high energies. Quadratic AQP obtained
with the linear basis corrects the low energy regime in a manner

Figure 1. Autocorrelation function,C(t) ) 〈ψ(0)|ψ(t)〉, of a wave packet in the Morse potential. (a)R(C(t)) of the ground eigenstate using QM
(circles) and AQP with exponential basis function (line) propagations. (b) Quantum trajectories for the ground eigenstate obtained with the AQP
method. (c)R(C(t)) of the Gaussian wave packet using QM (circles), AQP with (thick line) and without (thin line) exponential basis function. (d)
|C(t)| of the Gaussian wave packet. Legend is the same as in panel c.

Figure 2. Wave packet reaction probabilities for the O+ H 2(ν ) 0,
j ) 0) f OH + H reaction on (a)3A′ and on (b)3A′′ potential surfaces
as a function of the translational energy. Results for QM (circles),
classical (triangles), AQP with linear basis (dash), and AQP with the
added exponential function (solid line) methods are shown on both
panels.

Figure 3. Wave packet reaction probabilities for (a) O+ HD (ν ) 0,
j ) 0) f OH + D and (b) O+ HD (ν ) 0, j ) 0) f OD + H reaction
on 3A′ surface. Results for QM (circles), classical (triangles), AQP with
linear basis (dash), and AQP with the added exponential function (solid
line) methods are shown on both panels. Note the difference in scale
of the vertical axis.
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consistent with an earlier application to the collinear hydrogen
exchange reaction.25 This form of AQP gives a larger correction
on the3A′′ surface, which is consistent with the more significant
tunneling associated with this surface. Addition of the expo-
nential function to the expansion basis for the nonclassical
momentum determining the AQP, further improves the semi-
classical probabilities, resulting in very good agreement with
the QM probabilities on both surfaces. The trajectory prob-
abilities are obtained using 5000 trajectories. We observe similar
accuracy of the AQP results for the O+ HD reaction, although
due to low probabilities in the OD+ H channel three times as
many trajectories are required for convergence. For a typical
trajectory propagation, 1-2% of computer time is spent on the
AQP computation. The accuracy and scaling properties of the
AQP method will be further explored in studies of nonadiabatic
dynamics for this reaction and in applications to larger molecular
systems.
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